(6 Marks)

(7 Marks)

reflection (7 Marks)

entation. (6 Marks)

5=29 Marks)

Page No... 1

NEW SCHEME

EC36

Third Semester B.E. Degree Examination, January/February 2005

EC / TE / ML / IT / BM / EE Signals and Systems

Time: 3 hrs.]

[Max.Marks: 100

Note: 1. Answer any FIVE full questions.

- 2 .Assume missing data if any suitably.
- 3. Mention the assumtions made.
- **1.** (a) Sketch the following signals and determine their even and odd components and sketch them.

(i)
$$r(t+2) - r(t+1) - r(t-2) + r(t-3)$$

(ii)
$$u(n+2) = 3u(n-1) + 2u(n-5)$$
.

(6+6=12 Marks)

b) Given the signal x(t) as shown in fig 1.b, sketch the following:

i)
$$x(-2t+3)$$

ii)
$$x(\frac{t}{2}-2)$$

(4 Marks)

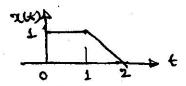


Fig.1(b)

(c) Check the system given below for linearity. Give reasons for your answer.

$$\frac{dy(t)}{dt} + 10y(t) + 5 = x(t) \tag{4 Marks}$$

2. (a) Check whether the following singnals are periodic or not. If periodic, determine their fundametal period.

i)
$$x(n) = Cos(\frac{\pi n}{l})sin(\frac{\pi n}{s})$$

ii)
$$x(t)=(2cos^2(rac{\pi t}{2})-1)Sin\pi tcos\pi t$$

(6 Marks)

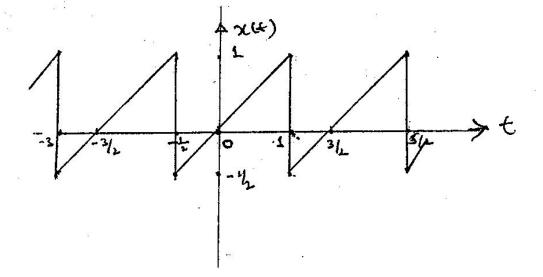


Fig2(b)

(c) Determine the output y(t) of a LTI system with impulse response h(t) = u(t+1) - 2u(t) + u(t-1) and input $x(t) = -1 \mid t \mid \leq 2$.

$$= 0 |t| > 2$$

Sketch the signals x(t), h(t) and y(t).

(10 Marks)

3. (a) Determine the complete response of jthe system described by

 $\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) = x(t) + 2\frac{dx(t)}{dt}$ for the input $x(t) = 2e^{-t}$ u(t) with initial conditions y(0)=1. $\frac{dy(t)}{dt}$ $|_{t=0}=1$. Comment on the stability of the system

(10 Marks)

(b) Draw the direct form I & II realization for the following system.

i)
$$y(n) - \frac{1}{2}y(n+1) + \frac{1}{4}y(n-2) = x(n) + 2x(n+1)$$

ii)
$$2\frac{d^3y(t)}{dt^3} + \frac{dy(t)}{dt} + 3y(t) = x(t)$$
 (10 Marks)

- 4. (a) Derive the DTFS representation for a discrete time periodic signal x(n) using the mean square error (MSE) criterion. (10 Marks)
 - (b) Determine the signal x(n) given its Fourier representation as

$$x(j\omega)=jrac{d}{d\omega}[rac{1}{2+j(w+rac{\pi}{2})}]$$
 (5 Marks)

(c) Starting from signal x(t) definded as

$$x(t) = 1 \quad |t| \le 1$$
$$= 0 \quad |t| > 1$$

EC36

(4 Marks)

Page No... 3

EC36

Determine fourier transform of signal g(t) shown fig 4(c). Express g(t) in term of x(t).

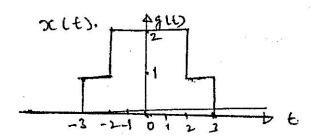


Fig 4(c)

(5 Marks)

5. (a) Determine the time domain signal given:

i)
$$x(j\omega) = e^{-|\omega|}$$

ii)
$$x(\epsilon^{j\Omega}) = \frac{6}{e^{-j2\Omega} \cdot 5e^{-j\Omega} + 6}$$

iii)
$$x(j\omega)=rac{4sin^2\omega}{\omega^2}$$

(12 Marks)

(b) Show that a real and odd continous time non periodic signal has purely imaginary Fourier transform. (4 Marks)

(c) Explain the reconstruction of CT signals implemented with zero-order device.

6. (a) Consider the system depicted in fig 6a. The FT of the input signal is given by

$$x(j\omega) = \left\{egin{array}{ll} \left(1 & \left(\mid rac{\omega}{\pi}\mid
ight) & \mid \omega\mid \leq \pi \ \mid \omega\mid > \pi \end{array}
ight.$$

The signals $\omega(t)$ and h(t) are given by $\omega(t)=cos5\pi t, h(t)=\frac{Sin6\pi t}{\pi t}$ and $y(j\omega)\longleftrightarrow y(t)$ Determine and sketch $y(j\omega)$.

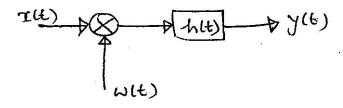


Fig 6(a)

(b) Find both the DTFS and DTFT representation for the periodic signal. (10 Marks) $x(n) = 2cos(\frac{3\pi n}{8} + \frac{\pi}{3}) + 4sin(\frac{\pi}{2}n)$

7. (a) Specify the properties of ROC

(4 Marks)

(b) Determine the Z-transform of the following signals.

(10 Marks)

u(t) with
ity of the

(10 Marks)

(10 Marks)

using the

(5 Marks)

i)
$$x(n) = \alpha^{|n|}$$

ii)
$$x(n) = n(\frac{1}{3})^{n+3}u(n+3)$$

iii)
$$x(n) = n(\frac{1}{2})^n u(n) * (\delta(n) - \frac{1}{2}\delta(n-1))$$

(4+6+6=16 Marks)

8. (a) A casual stable discrete time system is defined by

$$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n) - 2x(n-1)$$
. Determine:

- i) System function H(Z) and magnitude response at zero frequency.
- ii) limpulse response of the system.

iii) output
$$y(n)$$
 for $x(n) = (\delta(n) - \frac{1}{3}\delta(n-1))$

(12 Marks)

(b) State and prove differentiation property of Z-transform. Determine the signal x(n), given. (8 Marks)

$$X(Z) = \frac{\frac{5}{2}}{(1 - \frac{1}{2}Z^{-1})^{2}(1 + \frac{1}{3}Z^{-1})} \quad |Z| > \frac{1}{2}.$$

** * **